Perspective for Java Programmer's Manual
 Chapter 3. Using Perspective for Java

Chapter 3.
Using Perspective for Java

GETTING A CHART UP AND VIEWABLE

The method that you will use to display the chart will be different depending on the development environment: a Java Development Environment or HTML.

In A JDE

In a Java Development Environment XE "Java Development Environment" , use the procedures described in Chapter 2 to install the Perspective for Java bean into the JDE's component library. To get a chart up and viewable, simply create a new project applet window and drag the Perspective for Java bean from the component library to the new applet window. The default graph type (a vertical bar chart) using Perspective sample data will be displayed in the applet window.

In HTML

For HTML XE "HTML:Development" development, use one of the sample .HTML files provided in the samples section of the download page. These example .HTML files illustrate how to develop simple bar, bi-polar, and pie charts. Use the example files as a basis from which to develop your own .HTML files.

HTML OR JAVA DEVELOPMENT

Whether you use HTML or JAVA development depends on the development tools that you have or your system or intend to purchase for use with Perspective for Java. For HTML or JAVA development, you must use a Java 1.1 compliant browser for Java Development Environment (See Chapter 2 for details). See Chapter 4 for more information about the methods and properties that are available for HTML development. See Chapter 5 for more information about using Perspective for Java in a Java Development Environment.

HOW PROPERTIES AND METHODS WORK

Properties can be used to assign a single value to a particular object or objects in a chart. All properties can be used as methods by assigning a "set" or "get" prefix to the property name. Most methods are overloaded and allow you to select an object in a chart by its Object ID, sequentially with an integer value, or according to the currently selected object.

THE GRAPHTYPE PROPERTY

In either development environment (a JDE or Browser), use the GraphType property XE "GraphType" to select and display a particular chart type. Example:

/* Set the graph type to Pie */
perspective1.setGraphType(55);

One of 94 different chart types can be selected. They are grouped in the following categories:

Graph Type Values

GraphType Values
Chart Category

0…7, 9, 10, 12…14
3D

17...23
Vertical Bar

24...30
Horizontal Bar

31...35
Vertical Area

36...40
Horizontal Area

55...60 & 93...94
Pie

61...64
Scatter

65...66
Polar

67...69
Radar

70...84 & 88
Stock

85...82
Histograms

87
Spectral Map

90...92
Bubble Charts

See Appendix A for a complete list of chart types and an illustration of each chart using sample data.

Graph Type Methods

These methods can be used to determine the chart type that is currently selected:

isChart3DType(): This method returns a value of true or false indicating whether or not the GraphType property is currently set to a value in the range: 0…7, 9, 10, or 12…14 (a 3D chart).

isChartBiPolar(): This method returns a value of true or false indicating whether or not the GraphType property is currently set to a bi-polar chart type (i.e., 21 (Vertical Bi-Polar Clustered Bars), 22 (Vertical Bi-Polar Stacked Bars), etc.).

isChartBLAType(): This method returns a value of true or false indicating whether or not the GraphType property is currently set to a Bar, Line, or Area chart type (i.e., 17...54).

isChartDualY(): This method returns a value of true or false indicating whether or not the GraphType property is currently set to a dual Y-axes chart type (e.g., 19 (Vertical Dual-Axis Clustered Bars), 20 (Vertical Dual-Axis Stacked Bars), etc.).

isChartOrientHorz(): This method returns a value of true or false indicating whether or not the GraphType property is currently set to a horizontally-oriented chart type (e.g., 24 (Horizontal Clustered Bars), 25 (Horizontal Stacked Bars), etc.).

isChartPieType(): This method returns a value of true or false indicating whether or not the GraphType property is currently set to a pie chart type (i.e., 55...60).

isChartScatter(): This method returns a value of true or false indicating whether or not the GraphType property is currently set to a scatter chart type (i.e., 61...64).

isChartStockType(): This method returns a value of true or false indicating whether or not the GraphType property is currently set to a stock chart type (i.e., 70...84 or 88).

HOW CHARTS ARE IMAGED

Unless otherwise specified, an internal set of default attributes/properties determines how a chart is initially imaged.

Chart Sizing

When a chart XE "Chart Sizing" is initially imaged, it is drawn using the Perspective minimum size (100, 100) -- approximately a 1-inch by 1-inch square.

Perspective expects the programmer or the container's layout manager XE "Layout Manager" to use the standard JAVA setSize XE "Chart Sizing:setSize" () and/or setBounds XE "Chart Sizing:setBounds" () methods to set the size required by the application or container in which it is used. This allows the Perspective component to be instantiated and mixed with other components without disrupting the sizing issues required by the container or other components within the container.

You can use the Perspective getMinimumSize() method to determine the minimum size of Perspective.

3D Charts

For all 3D charts XE "3D Charts" , the graph is imaged using Viewing3DAnglePreset set to one (standard). This images the chart with the labels for the ordinal axes (O1 (Groups) and O2 (Series)) on the bottom of the chart and labels for the numeric (Y1) axis on the left side as shown in the following illustration:

Single Axis/Vertical Charts

For single axis, vertical charts, the default attributes image the ordinal (O1) axis on the bottom of the chart and numeric (Y1) axis on the left side chart. The series labels are drawn in the legend area at the bottom of the chart as shown in the following illustration:

For all vertical and horizontal charts, automatic shading of risers and a 2.5 effect (DepthRadius and DepthThickness) is applied to the graph.

Single Axis/Horizontal Charts

For single axis, horizontal charts, the default attributes image the ordinal (O1) axis on the left side of the chart and numeric (Y1) axis on the bottom side of the chart as shown in the following illustration:

Dual-Axes and Bi-Polar Vertical Charts

For dual axes and bipolar vertical charts, the Y1 axis is imaged on the left side of the chart and the Y2 axis is drawn on the right side as shown in the following illustration:

Dual-Axes and Bi-Polar Horizontal Charts

For dual axes and bipolar horizontal charts, the Y1 axis is drawn on the bottom of the chart and the Y2 axis is imaged on the top chart as shown in the following illustration:

A dual-axes line is drawn dividing the two halves of the chart. The default dual-axes split position is 50.

Pie Charts

Pie charts XE "Pie Charts" are drawn with pie feelers and labels, the PieDepth set to 30, and the PieTitle set to 10. If a multiple pie graph type is used, the chart is imaged with two pies per row. The pie feeler text format is set to zero (standard) so that the actual value that make of the pie slice is displayed. All groups in a series are combined to form a single pie slice.

The chart legend area at the bottom of the chart shows the series labels.

When GraphType(93) is selected, Perspective maps the series in the pie chart to a bar showing the values associated with each wedge:

You can use the PieBarSeries property to select the series in the pie chart that will be used to map the bar. The default pie bar series is zero.

Scatter Charts

For XE "Scatter Charts" scatter charts, the X1 axis is drawn on the bottom of the chart and the Y1 axis is drawn on the left side of the chart. If a dual axes scatter chart is selected, the Y2 axis is drawn on the right side of the chart:

Stock Charts

The High/Low Stock, Candle graph is a "Japanese" style stock chart XE "Stock Charts" . Risers are defined by open and close values. Ticks poke out from the top and bottom for high and low values. The bars will be one color if the close value is greater than the open value. Another color is used if the open value is greater than the close.

In stock charts, green risers show high values and blue risers show low values. If single axis stock charts, the Y1 axis is drawn on the left side of the chart and the O1 axis is drawn on the bottom of the chart. For dual-axes and bi-polar stock charts, the Y1 axis is drawn on the left and the Y2 axis is drawn on the right side.

If close values are included in the chart, a line is drawn in the riser at the close value. If volume values are included, the volumes are shown in the bottom of the chart on the Y2 axis and high, low, open, and/or close values are shown in the top of the chart.

Histograms

The vertical histogram is drawn with the X1 axis at the bottom of the chart and the Y1 axis on the left side as shown in the following illustration. If a horizontal histogram is used, the Y1 axis is drawn at the bottom of the chart and the X1 axis along the left side. XE "Histogram Charts"

Spectral Map

The spectral map chart type is a row or column matrix of markers that are colored according to data values. The default chart with sample data draws the O2 (series) axis labels on the left side of the chart and the O1 (group) axis labels at the bottom of the chart as shown in the following illustration: XE "Spectral Maps"

In a Spectral Map, the risers are colored by height (rather than by series or by group). The charting engine chooses the color of quantative data representations based on the data values supplied to the chart. You can use the getColorByHeight() and gradient methods to modify the gradient.

Bubble Charts

Perspective includes four types of bubble charts: Single axis chart with and without labels and Dual axes chart with and without labels. In the default configuration the Y1 axis labels are drawn on the left side of the chart and the X1 axis labels are drawn at the bottom of the chart. Three quadrant lines are drawn for the Y1 axis and two quadrant lines are drawn for the X1 axis as shown in the following illustration: XE "Bubble Charts"

VIRTUAL COORDINATES

All charts are drawn using a virtual coordinate system. Regardless of the type of screen or printer device, the chart is created using the virtual coordinate system XE "Virtual Coordinates" . The following illustration is a diagram of the virtual coordinates system:

The virtual coordinates are converted to device coordinates when an object is drawn on the device. Some objects in a chart can be resized and relocated using setRect() method. The size of some objects in a chart are calculated at run-time by the charting engine and cannot be changed.

CHART-WIDE PARAMETERS

These properties and methods control the overall appearance and look of the chart:

BiDirectional (true/false)

GraphType (0...93)

ManualRedraw (true/false)

UseSampleData (true/false)

UseOffScreen (true/false)

The BiDirectional property reverses the text alignment of all objects and the location of legend text next to label markers. This property is provided for international support ONLY! It can be used to make the entire chart read from right-to-left (BiDirectional(true)) or left-to-right (BiDirectional(false)). However, note that BiDirectional(true) does not reverse the values of the associated properties and methods. They retain their original values. For example, getTextJustHoriz() would return zero (left) even though visually the text is aligned right by BiDirectional(true). Use this property with great care! Your application must keep track of the BiDirectional setting and handle the reverse values supplied by associated properties and methods.

The GraphType property selects the type of graph (e.g, 3D, Vertical Bar, Pie, Stock, etc.) to be drawn. Appendix A includes an example of each of the 93 graph types that Perspective supports.

The ManualRedraw property enables (true) / disables (false) manual redrawing of the chart when the chart properties/attributes are changed. The default value is false so that the chart is always automatically redrawn when chart properties change.

The UseSampleData property enables (true) / disables (false) the use of a sample data in a chart. Different sets of data are included in TDGDataSampler XE "TDGDataSampler" .class for use with the various graph types. This data can be used to show how various graph types are imaged using typical data that might be included in the chart. See "The Data Interface" for methods that can be used to import your own data in a chart. Chapter 6 contains additional information about including your own data in a chart.

The UseOffScreen property controls whether the chart will be drawn directly to the graphics device (true) or using an off-screen image buffer (false). Set this property to false when the drawing speed of the chart seems very slow. When this property is set to false, it can increase the drawing speed by a factor of three in some situations.

CHART FRAME ATTRIBUTES

The chart frame is the outer edge of the chart on which gridlines and risers (bar, area, markers) are drawn.

These properties and methods define how the chart frame is imaged:

FrameDisplay (True/False)

DepthAngle (0...360)

DepthRadius (0...100)

The FrameDisplay property enables (true)/disables (false) display of the chart frame text string. The default value is True.

To draw a chart frame with a 2.5D effect XE "2.5D effect" as shown in this example, use the DepthAngle and Depth Radius properties to set the angle and radius of the 2.5D effect. This example chart frame was drawn with the default values DepthAngle(45) and DepthRadius(25).

AXIS ATTRIBUTES

Depending on the graph type, the chart may include one or two ordinal axes (O1 and O2) and up to three numeric axes (X1, Y1, Y2). The following illustration shows a chart with one ordinal axis XE "Axes:Attributes" (O1) and two numeric axes (Y1 and Y2). Note that the secondary ordinal axis (O2) only appears in 3D charts.

An O1 (group or category) axis is included in all chart types except bubble, histogram and scatter charts. An O2 (series) axis is only included in 3D charts. An X1 axis is only included in bubble, histogram, and scatter charts. A Y1 axis is included in all chart types except pies. A Y2 axis is only included in dual-axes charts. An X1 axis is only included in bubble, histogram and scatter charts. The following table shows the default values for properties that affect these axes and their grid lines, labels, titles, etc. Blank cells indicate the property is not supported or applicable for the axis:

Axis Properties

Property
O1 Axis
O2 Axis (3D Charts and Spectral Map Only)*
X1 Axis
Y1 Axis
Y2 Axis

AxisDescending

false
false
false

AxisLineDisplay
true

true
true
true

AxisSide
0

0
0
1

ExcludeMaxLabel
false
false
false
false
false

ExcludeMinLabel
false
false
false
false
false

LabelAutofit
true
true
true
false
true

LabelAutoskip
0

LabelDisplay
true
true
true
true
true

LabelFormat

0
0
0

LabelFormatPattern

"#.#"
"#.#"
"#.#"

LabelMargin
0

LabelRotate
0
0
0
0
0

LabelSkipBegin
0

LabelSkipCount
0

LabelStagger
false

false
false
false

LogScale

false
false
false

LabelWrap
false
false

MajorGridDisplay
true
*
true
true
true

MajorGridStep

10.0
10.0
10.0

MajorGridStepAuto

true
true
true

MajorGridStyle
0

0
0
0

MinorGridCount
1

MinorGridDisplay
false

false
false
false

MinorGridStep

10.0
10.0
10.0

MinorGridStepAuto

true
true
true

MinorGridStyle
0

0
0
0

MustIncludeZero

false
false
false

OffScaleDisplay

true
true
true

ScaleMax

100.0
70.0
80.0

ScaleMaxAuto

true
true
true

ScaleMin

0.0
0.0
0.0

ScaleMinAuto

true
true
true

TitleAutofit
true
true
true
true
true

TitleDisplay
false
false
false
false
false

TitleString
Null String
Null String
Null String
Null String
Null String

*
Grid3DFloorDisplayX/Z, Grid3DLeftWallDisplayY/Z, Grid3DRightWallDisplayX/Y, and Grid3DRiserDisplayX/Y/Z enable/disable the display of grid lines in a 3D chart.

Ordinal Axis Properties

Use these properties to define how ordinal axis XE "Axes:Ordinal"

 XE "Ordinal Axis:Properties" are imaged in the chart:

O1AxisLineDisplay (true/false): This property enables (true) / disables (false) the display of the base line on the primary ordinal axis.

O1AxisSide (0...3): This property controls which side of the graph the ordinal axis is imaged. Although the vast majority of all graphs will image their ordinal text on the bottom of a vertical chart or left of a horizontal chart, it is possible to image it to the top/right or both sides. The default value is 1 (bottom for vertical charts/left for horizontal charts).

Also see "Labels and Titles" and "Grid Lines" for additional information about how to control the display of labels and titles on an ordinal axis.

Ordinal Axis Methods

Use these methods to determine if the chart includes the primary or secondary ordinal axis: XE "Axes:Ordinal"

 XE "Ordinal Axis:Methods"

isO1AxisPresent(): This method returns true or false indicating whether or not the primary ordinal axis is present in the chart.

isO2AxisPresent():This method returns true or false indicating whether or not the secondary ordinal axis is present in the chart.

These properties indicate whether or not the axis is present regardless of whether or not the axis base line is enabled for display. The primary ordinal axis is present in most graph types. The secondary ordinal axis is only present in 3D graph types.

Numeric Axis Properties

Use these properties to define how numeric axes XE "Axes:Numeric"

 XE "Numeric Axis:Properties" are imaged in the chart:

X1/Y1/Y2AxisDescending (True/False)

X1/Y1/Y2AxisLineDisplay (true/false)

X1/Y1/Y2AxisSide (0...2)

X1/Y1/Y2OffScaleDisplay (True/False)

X1/Y1/Y2LogScale (True/False)

X1/Y1/Y2ScaleMax (Double)

X1/Y1/Y2ScaleMaxAuto (True/False)

X1/Y1/Y2ScaleMin (Double)

X1/Y1/Y2ScaleMinAuto (True/False)

X1/Y1ZeroLineDisplay (True/False)

X1/Y1/Y2MustIncludeZero (True/False)

Use the AxisDescending properties to change the direction of values displayed on the axis to descending or ascending. The default value is True (ascending values).

The AxisLineDisplay properties enable (true) / disable (false) the display of the bottom line on an axis.

The AxisSide properties control the side of the chart where the axis is imaged. For vertical charts, the default settings draw the Y1 axis on the left side of the chart and the Y2 on the right. For horizontal charts, Y1 is drawn on the bottom of the chart and Y2 on the top.

The LogScale properties specify the scale (logarithmic or linear) for the numeric axis. The default value is False (linear).

The OffScaleDisplay properties determine whether or not values out of range are imaged on the axis.

The ScaleMin and ScaleMax properties define the range (minimum and maximum) of values that will be imaged on the axis. The ScaleMinAuto and ScaleMaxAuto properties tell the charting engine to automatically calculate the minimum and maximum values. If these properties are enabled (set true), values set by ScaleMin and ScaleMax are ignored.

The ZeroLineDisplay properties enable/disable drawing of a zero line on an axis. The default value is true (the zero line is drawn).

The MustIncludeZero properties determine whether or not the numeric axes includes zero. The default value is false.

Also see "Labels and Titles" for additional information about how to control the display of labels and titles on a numeric axis.

Numeric Axis Methods

Use these methods to get information about specific numeric axes in a chart: XE "Axes:Numeric"

 XE "Numeric Axis:Methods"

getX1MajorGridStepAutoValue(); If major grid steps are automatically calculated, this method returns the grid step value for the X-axis.

getX1ScaleMaxAutoValue(); If the maximum scale value is automatically calculated, this method returns the maximum scaling value that will be used on the X-axis.

getX1ScaleMinAutoValue(); If the minimum scale value is automatically calculated, this method returns the minimum scaling value that will be used on the X-axis.

getY1MajorGridStepAutoValue(); If major grid steps are automatically calculated, this method returns the grid step value for the Y1-axis.

getY1ScaleMaxAutoValue(); If the maximum scale value is automatically calculated, this method returns the maximum scaling value that will be used on the Y1-axis.

getY1ScaleMinAutoValue(); If the minimum scale value is automatically calculated, this method returns the minimum scaling value that will be used on the Y1-axis.

getY2MajorGridStepAutoValue(); If major grid steps are automatically calculated, this method returns the grid step value for the Y2-axis.

getY2ScaleMaxAutoValue(); If the maximum scale value is automatically calculated, this method returns the maximum scaling value that will be used on the Y2-axis.

getY2ScaleMinAutoValue(); If the minimum scale value is automatically calculated, this method returns the minimum scaling value that will be used on the Y2-axis.

isX1AxisPresent(); This method returns true or false indicating whether or not the X-axis is prsent in the chart.

isY1AxisPresent();This method returns true or false indicating whether or not the primary numeric axis is prsent in the chart.

isY2AxisPresent();This method returns true or false indicating whether or not the secondary numeric axis is prsent in the chart.

isZ1AxisPresent();This method returns true or false indicating whether or not the Z-axis is prsent in the chart.

These properties indicate whether or not the axis is present regardless of whether or not the axis base line is enabled for display. The X1-axis is present in scatter charts, bubble charts, histograms, etc. The Y1-axis is present in most graph types. The Y2-axis is only present in dual-axes charts.

Axis Independent Methods

In addition to the axis-specific properties and methods described above, these methods can be used to get and set axis attributes.

get/setAxisAssignment(); Get/set the axis assignment to determine where a series is assigned to an axis.

get/setAxisDescending(); Get/set the order (ascending or descending) in which an axis is drawn.

get/setAxisSide(); Get/set the side of the chart where an axis is imaged.

get/setDisplayOffscale(); Get/set whether or not off-scale values are drawn on an axis.

get/setLogScale(); Get/set whether the axis uses linear or logarithmic scaling

get/setLogScaleBase(); Get/set the scale base when logarithmic scaling is used on a numeric axis.

get/setScaleMax; Get/set the maximum value imaged on an axis.

get/setScaleMaxAuto(); Get/set automatic calculation of the ScaleMax value.

get/setScaleMin(); Get/set the minimum value imaged on an axis.

get/setScaleMinAuto();Get/set automatic calculation of the ScaleMin value.

get/setScaleMustIncludeZero(); Get/set whether or not the axis must include a zero value.

When these methods are used, the object ID of an axis may be supplied as an input parameter to identify the axis where the attribute is applied. See "Getting an Object ID" for methods that can be used to get an object ID. If an axis is not specified, the attribute is retrieved from or assigned to the first item in the selection list. If the object ID does not identify an axis or the first item in the selection list is not an axis, a "set" operation will apply the attribute to the object but it will not effect the appearance of the chart.

Properties for Dual Axes Charts

These properties control the axes in dual-axes charts:

DualAxisLineDisplay (True/False); This property enables (true) / disables (false) the display of a line that separates the two halves of a dual axes chart.

DualAxisSplitPosition (0...100); This property sets the position within the chart frame where the Dual-Y split position will be created.

Autofitting Axis Text

Use these methods to define how axis text is autofitted:

AxisTextAutofitMax
(value); This property defines the maximum size of axis text in virtual coordinates.

AxisTextAutofitMin (value); This property defines the minimum size of axis text in virtual coordinates.

AxisTextAutofitMode (0...2); This property defines the mode to be used for autofitting axis text.

AxisTextAutofitPercent (0...100%); When AxisTextAutofitMode is set to two, this property defines the percent to be used for autofitting axis text. All Axis text is maintained within AxisTextAutofitPercent of the axis with the smallest font size as determined by Autofit.

GRID LINES

Each axis in a chart can include or exclude major and minor grid lines XE "Grid Lines" . Properties and methods also allow you to specify the number and style of grid lines displayed on each axis. The following illustration shows a bi-polar chart where major and minor grid lines have been enabled on the ordinal (O1) axis and both numeric (Y1 and Y2) axes:

Ordinal Axis Grid Lines

Use these properties to control the grid lines XE "Grid Lines:Ordinal Axis" on the ordinal axis XE "Ordinal Axis:Grid Lines" :

O1MajorGridDisplay (True/False)

O1MajorGridStyle (0...5)

O1MinorGridCount (0…50)

O1MinorGridDisplay (True/False)

O1MinorGridStyle (0...5)

These properties control the number, display, and style of ordinal axis major and minor grid lines. Major and minor grid lines can be displayed in one of the following styles:

0=
No grid lines

1=
Normal grid lines, height of frame

2=
Normal grid lines extended beyond the height of frame

3=
Small tick marks from frame edge inward

4=
Small tick marks from frame edge outward

5=
Ticks span across the frame edge

All charts can include major and minor grid lines. In the default configuration, major grid lines are drawn and minor grid lines are not drawn. When both grid lines are displayed, different styles can be assigned to major and minor grid lines so that they are easily distinguished in the chart.

Numeric Axis Grid Lines

Use these methods to control the appearance of grid lines XE "Grid Lines:Numeric Axis" on the numeric axes XE "Numeric Axis:Grid Lines" (X1, Y2, and Y2) in a chart.

X1/Y1/Y2MajorGridDisplay (True/False)

X1/Y1/Y2MajorGridStyle (0…5)

X1/Y2/Y2MajorGridStep (double)

X1/Y1/Y2MajorGridStepAuto (true/false)

X1/Y1/Y2MinorGridDisplay (True/False)

X1/Y1/Y2MinorGridStyle (0…5)

X1/Y1/Y2MinorGridStep(double)

X1/Y1/Y2MinorGridStepAuto (true/false)

The GridDisplay properties control the display of major and minor grid lines on a numeric axes. The default value is true for major grid lines and false for minor grid lines. The GridStyle properties select the style of numeric axes major and minor grid lines:

0=
No grid lines

1=
Normal grid lines, height of frame

2=
Normal grid lines extended beyond the height of frame

3=
Small tick marks from frame edge inward

4=
Small tick marks from frame edge outward

5=
Ticks span across the frame edge

Typically different styles are used for major and minor grid lines so that they are easily distinguished in the chart.

The GridStep and GridStepAuto properties control the number of numeric axis grid lines according to the number of values displayed on an axis. If the GridStepAuto property is enabled, the number of grid steps is automatically calculated and the value assigned to the associated GridStep property will be ignored. If the GridStepAuto property is disabled, the GridStep property controls the number of major or minor grid lines that will be imaged. For example, grid steps 1, 6, 11, 16, …51 will be imaged if the range of values in the chart is 1…51 and this property is set to 5. If this property is set to 10, grid steps 1, 11, 21, 31…51 would be displayed.

3D Grid Lines

Grid lines XE "Grid Lines:3D Graph" can be displayed on the floor and walls of the cube in 3D graphs as shown in the following illustration:

Use the following properties to enable and disable these grid lines:

Grid3DFloorDisplayX/Z (True/False): These properties enable/disable the display of X-axis and Z-axis grid lines on the floor of the cube.

Grid3DLeftWallDisplayY/Z (True/False): These properties enable/disable the display of Y- and Z-axis grid lines on the left wall of the cube.

Grid3DRightWallDisplayX/Y (True/False): These properties enable/disable the display of X- and Y-axis grid lines on the right wall of the cube.

Grids can also be displayed on risers in 3D graphs using these properties:

Grid3DRiserDisplayX (True/False): This property enables/disables the display of X-axis grid lines on risers in a 3D-surface chart. It is only applicable when a 3D-surface chart is selected.

Grid3DRiserDisplayY (True/False): This property enables/disables the display of Y-axis grid lines on risers in a 3D chart.

Grid3DRiserDisplayZ (True/False): This property enables/disables the display of Z-axis grid lines on risers in a 3D-surface chart. It is only applicable when a 3D-surface chart is selected.

Axis Independent Methods for Grids

In addition to the axis-specific grid properties described above, these methods can be used to get and set grid attributes.

get/setGridCount(): Get/set the number of grid lines on an axis.

get/setGridStep(): Get/set the number of grid steps on an axis

get/setGridStepAuto(): Get/set whether grid steps are automatically calculated on an axis.

get/setGridStyle(): Get/set the style of grid lines to be imaged on an axis

When these methods are used, the object ID of a grid may be supplied as an input parameter to identify the grid to which the attribute is applied. See "Getting an Object ID" for the methods that can be used to get the object ID of a grid. If a grid is not specified, the attribute is retrieved from or assigned to the first item in the selection list. If the object ID does not identify a grid object or the first item in the selection list is not an grid object, a "set" operation will apply the attribute to the object but it will not have any effect on the appearance of the chart.

CURVE FIT LINES

Perspective includes in the following properties and methods for drawing curve fit lines across one or more series of risers in a chart: XE "Curve Fit Lines"

get/setCurveFitType(); These methods get and set a curve fit type (e.g., linear, quadratic, polynomial, etc.). The setCurveFitType() method enables drawing of the curve fit line.

get/setCurveFitPolynomialOrder(); If setCurveFitType() selects a polynomial fit line, these methods get and set order for the polynomial fit.

CurveFitEquationDisplay; This property enables / disables drawing of the equation associated with a curve fit line.

CurveFitHighOrderFirst; When the CurveFitEquationDisplay property is true, this property selects the format of the equation.

CurveFitNumSegments; This property defines the number of segments to use in drawing a curve fit line.

RISERS AND MARKERS

The risers and markers XE "Risers and Markers" in a chart are initially determined by the graph type that is selected with the GraphType property. For example, GraphType 17 selects a vertical bar chart and the risers are drawn in the chart as vertical bars that are auto-shaded and imaged with a 2.5D effect by default. GraphType 54 selects a horizontal line chart in which risers are drawn as lines that are auto-shaded and imaged with a 2.5D effect by default.

The following properties and methods can be used to change how risers and markers are imaged in the chart. Also see "Pie Chart Properties and Methods" and "Stock Chart Characteristics" for more information about the risers and markers in these graph types.

Riser and Marker Properties

These properties control risers and markers in a chart:

ConnectLineMarkers (True/False)

ConnectScatterMarkers (True/False)

CubeSquareRisers (True/False)

DataLineThickness (1…100)

DisplayBarAsPictograph (True/False)

MarkerDisplay (True/False)

MarkerSizeDefault (0…100)

ReverseGroups (True/False)

ReverseSeries (True/False)

Riser3DThicknessY (0...100)

RiserBarGroupSpacing (0...100)

RiserBorderMode (0...2)

RiserWidth (0...100)

ScaleFromZero (True/False)

SeriesDefaultBorderColor(color)

SeriesDefaultTransparentBorderColor(True/False)

SeriesAreRows (True/False)

UseSeriesBorderDefaults(True/False)

If you want the risers XE "Risers and Markers:Properties" /markers in a chart to always be square regardless of the shape and size of a 3D cube (for example), use the CubeSquareRisers property.

In line charts where a 2.5D effect is not applied to the chart, the line risers are displayed as markers. Use the ConnectLineMarkers property to enable (true) / disable (false) the display of a line that connects the markers.

In a Scatter chart, use the ConnectScatterMarkers property to enable (true) / disable (false) the display of connecting lines between markers.

When lines are drawn between markers in a line or scatter chart, you may use the MarkerDisplay property to remove the markers from the chart and only display the connecting lines.

For a "2.5D effect XE "2.5D effect" " chart, the DataLineThickness property defines the thickness (in pixels) of the "fake 3D" line.

When a texture file has been loaded using setTextureURL(), the DisplayBarAsPictograph property can be used to enable the texture file image on bar risers.

Use the MarkerSizeDefault property to define the default size of markers in a 2D chart. See the get/setMarkerSize methods if you want to change the size of markers.

The Riser3DThicknessY, RiserWidth, and RiserBarGroupSpacing properties can be used to control the size of bar risers in 3D and 2D charts.

The RiserBorderMode property determine when riser borders are drawn (always, never, or only for small datasets (fewer than 900 risers)).

In applications where the data range can include negative numbers, the ScaleFromZero property determines whether the risers will be drawn pointing up and down from a zero line or whether all risers will draw straight up from the "bottom" of the graph.

The ReverseGroups, ReverseSeries, and SeriesAreRows properties can be used to control how data is assigned to risers and markers in a chart.

When UseSeriesBorderDefaults is enabled (true), riser borders will be drawn with the color defined with the SeriesDefaultBorderColor property if SeriesDefaultTransparentBorderColor is false. If SeriesDefaultTransparentBorderColor is true and UseSeriesBorderDefault is enabled, transparent borders are drawn around riser edges.

Riser and Marker Methods

In addition to the riser-specific properties described above, these methods can be used to get and set riser and marker XE "Risers and Markers:Methods" attributes.

get/setMarkerShape(): Get/set the shape of markers in a series.

get/setMarkerSize(): Get/set the size of markers in a series or series and group

The setMarkerShape() method can be used to set the shape of individual series of markers/risers in a chart. This allows you to use a different type of risers for series in a chart. For example, series one could use bar risers, series two could use line markers, and series three could use area risers.

When these methods are used, the object ID of a riser/marker may be supplied as an input parameter to identify the object to which the attribute is applied. See "Getting an Object ID" for the methods that can be used to get the object ID of markers and risers. If a riser or marker is not specified, the attribute is retrieved from or assigned to the first item in the selection list. If the object ID does not identify a riser or marker object or the first item in the selection list is not a riser or marker object, a "set" operation will apply the attribute to the object but it will not have any effect on the appearance of the chart.

Using Custom Marker Shapes

The following methods support custom marker shapes:

registerMarkerTemplate(): Register a user-defined marker.

setMarkerTemplate(): Assign the user-defined marker to a marker template slot.

getNextMarkerTemplateSlot(): Determine which marker is in each template slot.

In addition to the marker shapes that are provided with Perspective, you may also define your own custom marker shapes. Perspective provides the following marker shapes that can be set with setMarkerShape(): 1) Square, 2) Circle, 3) Diamond, 4) Plus, 5) Triangle-Up, and 6) Triangle-Down. Perspective supports up to 32 marker shapes. You may over-write any of the predefined marker shapes in template slots 1-6 or define new shapes in slots 7-32. Use the following procedures:

1.
Define the shape, typically as a standard Java Polygon. The polygon must fit in the rectangle: -900, -900, 1800, 1800 (i.e., the rectangle that goes from -900 to 900 in the X- and Y-directions). These are Perspective virtual coordinates.

2.
Register the polygon with Perspective with the following method:

int nNewShape =
perspective1.registerMarkerTemplate(Polygon newPolygon);

Where: m_chart = the Perspective instance the caller uses to access Perspective properties and methods.

3.
Use the marker shape number (e.g., nNewShape) returned by registerMarkerTemplate() as the input parameter to setMarkerShape. Example:

perspective1.setMarkerShape (
perspective1.getSeries(1),nNewShape);

4.
Perspective currently supports 32 marker shapes. It is possible to overwrite any or all of these using the following method:

setMarkerTemplate(int nIndex, Polygon newPolygon);

5.
You may use the following method to determine which marker shapes are assigned to each marker template slot:

getNextMarkerTemplateSlot();

Exceptional Risers

The following methods can be used to define the use of exceptional/highlighted risers in a chart.

get/setExceptionalRiser(): These methods get and set exceptional risers at a particular series and group.

getExceptionalRisers(): This method can be used to determine if there are any exceptional risers in a chart.

isExceptionalAllowed(): This method can be used to determine if exceptional risers are allowed in a chart.

setNoExceptionalRiser(): This method can be used to disallow exceptional risers in a chart.

LEGENDS

The following properties and methods control chart legends.

Legend Properties

These properties are used to control how the legend XE "Legends:Properties" area, legend markers, and legend text are imaged in a chart:

LegendAutomatic (True/False): This property enables/disables auto-fitting of text inside the legend box. The default value is True.

LegendDisplay (True/False): This property enables/disables drawing of the legend box. The default value is True.

LegendMarkerPosition (0…4): This property sets the location and format of the chart legends. The default value is 0.

LegendTextAutofit (True/False): This property enables (true) / disables (false) auto-fitting of the legend text. The default value is True.

UseSeriesShapes (True/False): This property enables/disables the use of the shapes defined by the setMarkerShape() method. This property is ignored if the LegendMarkerPosition property sets the legend text to display on top of the legend marker.

SquareMarkers (True/False): This property can be used to force markers in the legend area to fit in a perfectly square rectangle regardless of their shape. This property is ignored if the LegendMarkerPosition property sets the legend text to display on top of the legend marker.

Legend Methods

These methods are used to control how the legend XE "Legends:Methods" area, legend markers, and legend text are imaged in a chart:

setLegendOrient(int newValue): This method is used to set the orientation of the legends in a chart.

getLegendMinWidth (): This method allows a user to resize the legend so that none of the labels wrap or truncate. Note that since it specifically calculates wdith, it is applicable to Vertical legends only!

get/setLegendRect(): These methods are used to get/set the size and location of the legend rectangle. Also see "Virtual Coordinates" for additional information about the virtual coordinates system.

setLegendTextAutofit(boolean newValue): This method is used to enable (true) / disable (false) auto-fitting of the legend text.

LABELS AND TITLES

The titles XE "Titles and Labels"

 XE "Titles" and labels XE "Labels and Titles"

 XE "Labels" that are included in the chart consist of the chart-wide titles (footnote, title, and subtitle) and ordinal and numeric axis labels and titles. All labels and titles can be defined, displayed, and auto-fitted using the properties and methods described below.

Chart-Wide Titles

These properties are used to define, display, and auto-fit the chart title XE "Titles:Chart-Wide" , subtitle, and footnote.

FootnoteAutofit(true/false)

FootnoteDisplay(true/false)

FootnoteString (String)

SubtitleAutofit(true/false)

SubtitleDisplay(true/false)

SubtitleString (string)

TitleAutofit (true/false)

TitleDisplay (true/false)

TitleString (string)

Ordinal Axis Labels and Titles

These properties can be used to control the appearance of labels and titles XE "Labels and Titles:Ordinal Axis" on an ordinal axis XE "Ordinal Axis:Labels and Titles" :

O1/O2ExcludeMaxLabel(true/false)

O1/O2ExcludeMinLabel(true/false)

O1/O2LabelAutofit (true/false)

O1LabelAutoskip (0...2)

O1/O2LabelDisplay (true/false)

O1/O2LabelRotate (0…2)

O1LabelStagger(true/false)

O1/O2LabelWrap (true/false)

O1LabelSkipBegin (value)

O1LabelSkipCount (value)

O1/O2TitleAutofit (true/false)

O1/O2TitleDisplay (true/false)

O1/O2TitleString (String)

The ExcludeMinLabel and ExcludeMaxLabel properties can be used to include/exclude the minimum and maximum labels on the ordinal axis.

The LabelDisplay and LabelAutofit properties determine whether labels are displayed and auto-fitted on the ordinal axis. See "Label and Title Methods" for methods that can be used to define ordinal axis labels.

The LabelRotate, LabelStagger, and LabelWrap properties can be used to control how labels are imaged on the ordinal axis.

LabelAutoSkip, LabelSkipBegin, and LabelSkipCount properties can be used to omit some of the labels on the O1-axis. When LabelAutoSkip selects manual skip mode, LabelSkipBegin and LabelSkipCount properties define the beginning label and interval of labels to be omitted. When LabelAutoSkip selects automatic label skip mode, Perspective will omit labels as necessary when the chart is made smaller in order to maintain a reasonable, readable label size (a minimum 8-point font size).

The TitleAutofit, TitleDisplay, and TitleString properties are used to define, display, and auto-fit the title on an ordinal axis.

Numeric Axis Labels and Titles

These properties control the appearance of labels and titles XE "Labels and Titles:Numeric Axis" on a numeric axis XE "Numeric Axis:Labels and Titles" :

X1/Y1/Y2ExcludeMaxLabel(true/false)

X1/Y1/Y2ExcludeMinLabel (true/false)

X1/Y1/Y2LabelAutofit (true/false)

X1/Y1/Y2LabelDisplay (True/False)

X1/Y1/Y2LabelRotate (0…2)

X1/Y1/Y2LabelStagger (True/False)

X1/Y1/Y2TitleAutofit (True/False)

X1/Y1/Y2TitleDisplay (True/False)

X1/Y1/Y2TitleString (String)

The ExcludeMinLabel and ExcludeMaxLabel properties can be used to include/exclude the minimum and maximum labels on a numeric axis.

The LabelDisplay and LabelAutofit properties determine whether labels are displayed and auto-fitted on a numeric axis.

The LabelRotate and LabelStagger properties can be used to control how labels are imaged on a numeric axis.

The TitleAutofit, TitleDisplay, and TitleString properties are used to define, display, and auto-fit the title on a numeric axis.

Label and Title Methods

These methods can be used to control the appearance of labels and titles: XE "Labels and Titles:Methods"

getDataLabel(): These methods get and set a label string at a specified series and group.

get/setAutoSkip(): These methods get and set automatic, manual, or no skipping of labels on an axis.

get/setExcludeMaxLabel(): These methods get/set whether or not maximum labels are imaged for an axis in a chart.

get/setExcludeMinLabel(): These methods get/set whether or not minimum labels are imaged for an axis in a chart.

get/setGroupLabel(): These methods get/set the label string assigned to a group object.

get/setLabelStagger(): These methods get/set the label stagger attribute for an axis object.

get/setSeriesLabel(): These methods get/set the label string assigned to a series object.

get/setSkipBegin(): When setAutoSkip() is used to select manual skipping of labels on an axis, these properties can be used to get or set the first label to be skipped.

get/setSkipCount(): When setAutoSkip() is used to select manual skipping of labels on an axis, these properties can be used to get or set the interval of labels to be skipped.

When these methods are used, you may supply an object ID as an input parameter to assign or retrieve the attribute to/from a specific label. If a label object is not specified, the methods assign the attribute to or retrieve the attribute from the first item in the selection list. If the object ID does not identify a label object or the first item in the selection list is not a label object, a "set" operation applies the attribute to the object but it will not have any effect on the appearance of the chart.

Using Nested/Multi-Dimensional Labels

Perspective supports nested/multi-dimensional labels on the O1 axis with these properties and methods: XE "Labels:Nested"

setO1LabelCallback(): This method assigns a callback function to the nested labels interface.

getO1LabelCallback(): This method determines if a callback function has been assigned with setO1LabelCallback().

NestedLabels (true/false): This property enables/disables nested labels.

Use the following procedures to implement the nested labels interface:

1.
You must create your own version of the nested labels callback. It must implement all of the abstract methods defined in TDGNestedLabel.Java. They are:

abstract int getNumLevels();

abstract int getNumLabelsOnLevel(int nLevel);

abstract Vector getAllLabels(int nLevel);

abstract String getLabel(int nGroup, int nLevel);

abstract int getLabelGrouping(int nGroup, int nLevel);

2.
Register the callback with the setO1LabelCallback() method.

Example:

m_chart.setO1LabelCallback (TDGNestedLabel cb);

3.
Enable the NestedLabel property.

Example:

m_chart.setNestedLabels (true);

Perspective includes a simple example of nested labels in the TDGTestNestedGroupsLabels class. The example class can be enabled by setting the NestedLabels properrty to true.

DATA TEXT

In addition to labels and titles, you may also enable/disable the display of data values (data text XE "Data Text") in a chart.

Use these properties and methods to display data text and define where and how the data text is displayed:

DataItemsAlongSeries (True/False): This property determines whether data items are aligned parallel to the series (both rows or both columns).

DataTextAngleDefault (0…360): This property sets an angle from center-point that all data text is drawn from. The default value is 90.

DataTextDisplay (True/False): This property enables/disables the display of data values next to risers or markers in a chart.

DataTextPosition (0…5): This property can be used to define the position where data text is displayed. The default value is 0.

DataTextRadiusDefault (0...100): This property sets the default radius that data text will be drawn out from the center of a riser.

get/setDataTextAngle(): These methods get/set the angle from center point that all or selected data text is drawn.

get/setDataTextRadius(): These methods get/set the radius for the data text position of a specified data point.

The DataTextPosition property determines where data text labels are displayed in the chart. If this property is set to zero, Perspective will use the values set by DataTextAngleDefault or setDataTextAngle and DataTextRadiusDefault or SetDataTextRadius to determine where data text is displayed. The following illustrations show the data text positions that can be selected with DataTextPosition (1...5):

setDataTextPosition(1);

setDataTextPosition(2);

setDataTextPosition(3);

setDataTextPosition(4);

setDataTextPosition(5);

Three |D| Graphics (04.2000)
3-1
3-36
Three |D| Graphics (04.2000)
Three |D| Graphics (04.2000)
3-35

