PGSDK API Guide
Chapter 7: Selection List Management Functions

Chapter 7:
Selection List Management Functions

The selection list management functions provide the API calls necessary to create and edit selection lists. The selection lists contain information about each object the user selects for modification. These functions make it easy for your application to select objects and make modifications to the object attributes.

CreateSelItemOutline(); Create Selection Item Outline

DestroySelItemOutline(); Destroy Selection Item Outline

GetFirstDetNodeRef(); Get First Detection Node Reference

IsMarkerSelected(); Is marker selected?

Item2DetRef(); Selection Item -to- Detection Reference conversion

MoveSelectedItem(); Move a selected item to a new virtual location

Remove(); Remove item(s) from a selection list

RemoveItem(); Remove an item from a selection list

Select_AddGroupsRelatedObjects(); Select Add Group-Related Objects to Selection List

Select_AddHeightRelatedObjects(); Select Add Height-Related Objects to Selection List

Select_AddItem(); Select Add Item to Selection List

Select_AddRelatedItems(); Select Add Related Items to Selection List

Select_AddSeriesRelatedObjects(); Select Add Series-Related Objects to Selection List

Select_AllocList(); Select Allocate Selection List

Select_CalcHandlesItem(); Select Calculate Handles Selection Item

Select_CalcHandlesList(); Select Calculate Handles Selection List

Select_ClearList(); Select Clear Selection List

Select_DrawXorItem(); Select Draw Xor Selection Item

Select_DrawXorList(); Select Draw Xor Selection List

Select_DuplicateList(); Select Duplicate Selection List

Select_FreeList(); Select Free Selection List

Select_GetFirstItem(); Select Get First Item in Selection List

Select_GetListBounds(); Select Get Selection List Bounds

Select_GetListInfo(); Select Get Selection List Information

Select_GetNextItem(); Select Get Next Item in Selection List

Select_GetSelectedSeriesID(); Select Get Selected Series ID

Select_Group(); Select Group in Selection List

Select_HandleHitTest(); Select Selection List Handle Hit Text

Select_IsEqual(); Select are two selection items equal?

Select_IsObjectSelected(); Select is object selected in selection list?

Select_IsSeriesRelatedObject(); Select is series-related object?

Select_RebuildItem(); Select rebuild item in Selection list

Select_RebuildList(); Select rebuild Selection list

Select_RemoveItem(); Select remove item from Selection list

Select_RemoveRelatedItems(); Select remove related items from Selection List

Select_SearchList(); Select Search Selection list

Select_SelectAllSeriesRelatedObjects(); Select all series-related objects in a chart

Select_UnGroup(); Select Ungroup Selection list

SelectDetNode(); Select Detection Node

SelectDetNodesInRect(); Select Detection Nodes in a Rectangle

CreateSelItemOutline()

This routine returns a list of points (in device coordinates) that form the outline of the object that is identified by pItem. This function is particularly useful for pie slices and other multi-point objects.

Syntax:
LPPOINT PUBLIC
CreateSelItemOutline (
 DrawEnvPtr pDE,
 SelItemPtr pItem,
 PINT16 pnPoints
);

Input:
pDE: Pointer to a draw environment created by AllocDrawEnvPtr()

pItem: Pointer to an item in the selection list. See the SelItemRec in Appendix A.

pnPoints: Place to store the list of points

Return:
LPPOINT: Pointer to a list of points on success, NULL on failure.

Notes:
IMPORTANT: This function allocates memory that the caller must free. To free, use DestroySelItemOutline().

Also See:
DestroySelItemOutline()

DestroySelItemOutline()

This routine frees the pointer to the outline list that CreateSelItemOutline() created.

Syntax:
INT16 PUBLIC
DestroySelItemOutline (
 Point FAR * ptData
);

Input:
ptData: Pointer created by CreateSelItemOutline()

Return:
INT16: E00_OK

Also See:
CreateSelItemOutline()

GetFirstDetNodeRef()

This function sets pDetRef to the first detection node reference in the selection list at pSelList. XE "Selection Lists:Get First Detection Node Reference"

Syntax:
void PUBLIC
GetFirstDetNodeRef (
 SelListPtr pSelList,
 DetNodeRefPtr pDetRef
);

Input:
pSelList: Pointer to a selection list. See the SelListRec structure in Appendix A.

pDetRef: Place to store first detection node reference. See the DetNodeRef structure in Appendix A.

Return:
None

Example:
if (!pSelList)
 return E00_INVALID_NULL_ARG;
GetFirstDetNodeRef(pSelList, &detRef);

Notes:
Also, see the PGSDK Programmer's Manual for more information about detection nodes and selection lists.

Also See:
GetDetNode(), GetNextDetNode()

IsMarkerSelected()

This function returns a BOOLEAN16 identifying whether or not a marker is selected in the selection list identified by pSelList.

Syntax:
BOOLEAN16 PUBLIC
IsMarkerSelected(
 SelListPtr pSelList
);

Input:
pSelList: Pointer to a selection list. See the SelListRec structure in Appendix A.

Return:
BOOLEAN16; TRUE/FALSE

TRUE=
Marker is selected

FALSE=
Marker is not selected

Item2DetRef()

This function sets pDetRef to the detection node reference associated with the selection item at pItem.

Syntax:
void PUBLIC
Item2DetRef (
 SelItemPtr pItem,
 DetNodeRefPtr pDetRef
);

Input:
pItem: Pointer to an item in a selection list. See the SelItemRec in Appendix A.

pDetRef: Pointer to a detection node reference. See the DetNodeRef structure in Appendix A.

Return:
None

Example:
Item2DetRef (pItem, &detRef);

Also See:
DetRef2AnodeID()

MoveSelectedItem

This function moves a selected item to a new virtual location, invalidating the previous and new bounding rectangles. XE "Selection Item:Move"

Syntax:
void PUBLIC
MoveSelectedItem (
 DrawEnvPtr pDE,
 GraphPtr pGraph,
 SelItemPtr pSelItem,
 Rect FAR*newBounds
);

Input:
pDE: Pointer to a draw environment created by AllocDrawEnvPtr()

pGraph: Pointer to a graph object created by AllocGraphPtr()

pSelItem: Pointer to an item in a selection list allocated by Select_AllocList(). See the SelItemRec in Appendix A.

newBounds: Pointer to a rectangle that contains new virtual coordinates. See the Rect structure in Appendix A.

Return:
None

Notes:
This function has no effect on non-movable objects. It is a good short-cut for moving/resizing any movable item. You do not need to know which A_LOCATE_... attribute is appropriate for a selected item.

Also See:
GetObjectMobility()

Remove()

This function removes a selected annotation item or all annotation items. XE "Annotation Node:Remove"

Syntax:
int PUBLIC
Remove (
 GraphPtr pGraph,
 SelListPtr pSelList,
 BOOLEAN16 all
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pSelList: Pointer to a selection list. See the SelListRec in Appendix A.

all: TRUE/FALSE

TRUE=
remove all items

FALSE=
remove currently selected item only.

Return:
INT: E00_OK = successful, Any other value = error

Also See:
RemoveItem()

RemoveItem()

This function removes the object identified by pSelItem from the selection list. XE "Selection Lists:Remove Item"

Syntax:
int PUBLIC
RemoveItem (
 GraphPtr pGraph,
 SelItemPtr pSelList
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pSelList: Pointer to a selection item record identifying the item to remove from selection list. See the SelItemRec in Appendix A.

Return:
INT: E00_OK = successful, Any other value = error

Also See:
Remove(), Select_RemoveItem()

Select_AddGroupsRelatedObjects()

This function adds all the items in the detection node list with the same group ID and with an object/group relation (like risers etc...) to a selection list. XE "Selection Lists:Add Group Related Items"

Syntax:
INT16 PUBLIC
Select_AddGroupsRelatedObjects(
 GraphPtr pGraph,
 SelListPtr pSelList,
 INT16 nObjectID,
 INT16 nGroupID,
 BOOLEAN16 bSelectAll
);

Input:
pGraph; Pointer to the graph object created by AllocGraphPtr()

pSelList; Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

nObjectID; Object to add

nGroupID; Group to add

bSelectAll; TRUE/FALSE

TRUE=
Select all group related items

FALSE=
Only select nObjectID

Return:
INT16; E00_OK=Success, -1=Error

Also See:
Select_AddHeightRelatedObjects(), Select_AddRelatedItems(), Select_AddSeriesRelatedObjects(), Select_RemoveRelatedItems()

Select_AddHeightRelatedObjects()

This function adds all height-related objects to a selection list. XE "Selection Lists:Add Height Related Items"

Syntax:
INT16 PUBLIC
Select_AddHeightRelatedObjects(

 GraphPtr pGraph,
 SelListPtr pSelList,
 SelItemPtr pSelItem
);

Input:
pGraph; Pointer to the graph object created by AllocGraphPtr()

pSelList; Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A. This parameter identifies the selection list to be updated.

pSelItem: Pointer to an Item in a Selection List identifying the area to add. See the SelItemRec in Appendix A.

Return:
INT16;

E00_OK=
Success

-1=
Error

Also See:
Select_AddGroupsRelatedObjects(), Select_AddRelatedItems(), Select_AddSeriesRelatedObjects(), Select_RemoveRelatedItems()

Select_AddItem()

This function adds the item identified by pDetRef to the selection list (pSelList). XE "Selection Lists:Add Item"

Syntax:
SelItemPtr
Select_AddItem (
 GraphPtr pGraph,
 SelListPtr pSelList,
 DetNodeRefPtr pDetRef
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

pDetRef: Pointer to a detection node to be added to the selection list. See the DetNodeRef structure in Appendix A.

Return:
SelItemPtr

NULL = Item could not be added to list

Non-Zero = Object ID of item added to the selection list

Example:
case WM_LBUTTONDOWN;
{
/* Get the mouse pointer */
pt = MAKEPOINT (lParam);
/* Convert to virtual coordinates */
dvPoint(gpDrawEnv,&pt);
/* look for detnode at this coordinate */
if (FindDetNode (gpGraph, &pt, &gDetNode))
{
 /* Clear selection list */
 Select_ClearList (gpList);
 /* add the detnode object to list */
 gpSelItem = Select_AddItem(gpGraph,
 gpList, &gDetNode);
}

Notes:
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_AddRelatedItems()

Select_AddRelatedItems()

This function adds items to the selection list (pSelList) that are related as identified by nRelation. For example, if nRelation is set to SLR_SAME_SERIES, all graph objects with the same series ID as the pDetRef would be added to the selection list. If bSelectTarget parameter is TRUE, the target detection node is also added to the selection list. XE "Selection Lists:Add Related Items"

Syntax:
INT16 PUBLIC
Select_AddRelatedItems (
 GraphPtr pGraph,
 SelListPtr pSelList,
 DetNodeRefPtr pDetRef,
 INT16 nRelation,
 INT16 bSelectTarget,
 INT16 nObjectFilter
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

pDetRef: Pointer to a detection node to be added to the selection list. See the DetNodeRef structure in Appendix A.

nRelation: INT16 value from the SelListRelationIndexType enum that identifies the relationship of object to add:

SelListRelationIndexType
Value
Description

SLR_SAME_OBJECT
0=
Detection nodes with the same object ID

SLR_SAME_SERIES
1=
Detection nodes with the same series ID

SLR_SAME_GROUP
3=
Detection nodes with the same group ID

SLR_SAME_AREAINST
4=
Detection nodes with the same area instance

SLR_SAME_LINEINST
5=
Detection nodes with the same line instance

SLR_SAME_FONTINST
6=
Detection nodes with the same font instance

SLR_SAME_SG
7=
Detection nodes with the same series/group

SLR_DEFAULT
8=
Default

bSelectTraget: TRUE/FALSE

TRUE=
also add target detection node to list

FALSE=
don't add target detection node

nObjectFilter: Specify an Object ID to select only the detection nodes with this object ID. Use -1 to match all object types.

Return:
INT16: count of detection nodes added to the selection list (-1 = error)

Notes:
This is a very useful function for creating a list of all of a certain class of objects when the user selects one of object. For example, if your user selects one of group label, this function will highlight ALL group labels.

Also See:
Select_AddItem(), Select_RemoveRelatedItems()

Select_AddSeriesRelatedObjects()

This function adds all the items in the detection node list with the same series ID and with an object/series relation (like risers etc...) to a selection list. XE "Selection Lists:Add Series Related Objects"

Syntax:
INT16 PUBLIC
Select_AddSeriesRelatedObjects(
 GraphPtr pGraph,
 SelListPtr pSelList,
 INT16 nObjectID,
 INT16 nSeriesID,
 BOOLEAN16 bSelectAll
);

Input:
pGraph; Pointer to the graph object created by AllocGraphPtr()

pSelList; Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A. This parameter identifies the selection list to be updated.

nObjectID; Object to add

nGroupID; Series to add

bSelectAll; TRUE/FALSE

TRUE=
Select all series-related items

FALSE=
Only select nObjectID

Return:
INT16;

E00_OK=
Success

-1=
Error

Also See:
Select_AddGroupsRelatedObjects(), Select_AddHeightRelatedObjects(), Select_AddRelatedItems(), Select_RemoveRelatedItems()

Select_AllocList()

This function allocates memory for a new selection list and returns a pointer to the master record. XE "Selection Lists:Allocate"

Syntax:
SelListPtr PUBLIC
Select_AllocList (
 void
);

Input:
None

Return:
SelListPtr: Pointer to a Selection List. See the SelListRec in Appendix A.

Example:
CComSelList::CComSelList()
{
 m_pSelList= ::Select_AllocList();
 m_pDetNodeRef= ::AllocPtrClear(
 sizeof(DetNodeRef));
 m_nDragHandle = HANDLE_NONE;
}

Notes:
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_FreeList()

Select_CalcHandlesItem()

This function calculates moving/sizing handles for the bounding rectangle of the selection item identified by pItem. XE "Selection Items"

 XE "Selection Lists:Calculate Item Handles"

Syntax:
INT16 PUBLIC
Select_CalcHandlesItem (
 DrawEnvPtr pDE,
 SelItemPtr pItem
);

Input:
pDE: Pointer to a draw environment created by AllocDrawEnvPtr()

pItem: Pointer to an Item in a Selection List. See the SelItemRec in Appendix A.

Return:
INT16:

Possible Values
Description

E00_OK =
No Errors

E00_INVALID_NULL_ARG
pItem not specified

Example:
if(gpSelItem->nSeriesID >= 0 &&
 (gpSelItem->nObjectID == O2D_RISER ||
 gpSelItem->nObjectID == O2D_DATAMARKER ||
 gpSelItem->nObjectID == O2D_AREARISER))
{
 /*- Calculate Sizing Handles for item */
 Select_CalcHandlesItem (
 gpDrawEnv,gpSelItem);

Notes:
1.
This function can be called with the return value from Select_AddItem() to set up handles after a mouse click-select. Also note that this function does not draw the handles, it only calculates the handles. See Select_DrawXorItem() and Select_DrawXorList to draw handles.

2.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_CalcHandlesList(), Select_DrawXorItem()

Select_CalcHandlesList()

This function calculates moving/sizing handles for all items in the selection list identified by pSelList. XE "Selection Lists"

 XE "Selection Lists:Calculate Handles for all Items"

Syntax:
INT16 PUBLIC
Select_CalcHandlesList (
 DrawEnvPtr pDE,
 SelListPtr pSelList
);

Input:
pDE: Pointer to a draw environment created by AllocDrawEnvPtr()

pSelList: Pointer to a selection list. allocated by Select_AllocList(). See the SelListRec in Appendix A.

Return:
INT16:

Possible Values
Description

E00_OK =
No Errors

E00_INVALID_NULL_ARG
pItem not specified

Example:
/* Match up objects in selection
list with new detnodes */
Select_RebuildList (gpGraph,gpList);
/* Calculate handles for objects in
selection list based on new detnodes*/
Select_CalcHandlesList (gpDrawEnv,gpList);

Notes:
1.
Select_CalcHandleList should be called after a Select_RebuildList().

2.
This function does not draw the moving/sizing handles, it simply calculates them. Use Select_DrawXorList() to draw the handles calculated by this function.

3.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_CalcHandlesItem(), Select_RebuildList(), Select_DrawXorList()

Select_ClearList()

This function clears all the items from the selection list identified by pSelList and releases the memory associated with each item in the list. XE "Selection Lists:Clear"

Syntax:
INT16 PUBLIC
Select_ClearList (
 SelListPtr pSelList
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

Return:
INT16:

Possible Values
Description

E00_OK =
No Errors

E00_INVALID_NULL_ARG
pSelList pointer is NULL

Example:
/* Get the mouse pointer */
pt = MAKEPOINT (lParam);
/* Convert to virtual coordinates */
dvPoint(gpDrawEnv,&pt);
/* look for detnode at this coordinate */
 if (FindDetNode (gpGraph, &pt, &gDetNode))
{
 /* Clear selection list */
 Select_ClearList (gpList);
 /* add the detnode object to list */
 gpSelItem = Select_AddItem(
 gpGraph, gpList, &gDetNode);
}

Notes:
1.
This function clears the selection list, but it does not dispose of the list master itself, effectively clearing out the list to start with fresh selections.

2.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_FreeList()

Select_DrawXorItem()

This function draws moving/sizing handles for the selection list item identified by pItem. If the object is NOT movable, the system will draw a solid XOR line around the selected object. XE "Selection Item:Draw Xor"

Syntax:
INT16 PUBLIC
Select_DrawXorItem (
 DrawEnvPtr pDE,
 SelItemPtr pItem
);

Input:
pDE: Pointer to a draw environment created by AllocDrawEnvPtr()

pItem: Pointer to the item in a selection list to be XOR-ed. See the SelItemRec in Appendix A.

Return:
INT16:

Possible Values
Description

E00_OK =
No Errors

E00_INVALID_NULL_ARG
pItem and/or pDE is NULL

Example:
gpSelItem = Select_AddItem(
 gpGraph,gpList,gpDetNode);
Select_CalcHandlesItem (
 gpDrawEnv,gpSelItem);
Select_DrawXorItem (
 gpDrawEnv, pItem);

Notes:
1.
This function can be called with the return value from Select_AddItem() to draw handles after a click-select and a call to Select_CalcHandlesItem().

2.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_DrawXorList(), Select_CalcHandlesItem()

Select_DrawXorList()

This function exclusive-or’s the handles for every item in the selection list. This should be done after a graph redraw. XE "Selection Lists:Draw Xor"

Syntax:
INT16 PUBLIC
Select_DrawXorList (
 DrawEnvPtr pDE,
 SelListPtr pSelList
);

Input:
pDE: Pointer to a draw environment created by AllocDrawEnvPtr()

pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

Return:
INT16:

Possible Values
Description

E00_OK =
No Errors

E00_INVALID_NULL_ARG
pItem and/or pDE is NULL

Example:
INT16 NEAR XOR_List (
 HWND hWnd,
 SelListPtr pSelList,
 DrawEnvPtr pDrawEnv)
{
 HDC hdc;
 INT16 ret = 0;
 RECT r2;
 SelItemPtr pSelItem;
 hdc = GetDC (hWnd);
 DESetPortInfo(pDrawEnv,hdc, DE_PORT_NORMAL);
 DrawBegin(pDrawEnv);
 ret = Select_DrawXorList(pDrawEnv, pSelList);
 DrawEnd(pDrawEnv);
 ReleaseDC (hWnd,hdc);
 return (ret);
}

Notes:
1.
Select_CalcHandlesList() and Select_DrawXorList() should be called after Select_RebuildList(), so that the handles also remain valid across redraws.

2.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_DrawXorItem(), Select_CalcHandlesList(), Select_RebuildList()

Select_DuplicateList()

This function creates a copy of the selection list identified by pSelList and returns a pointer to the duplicate list. XE "Selection Lists:Duplicate"

Syntax:
SelListPtr PUBLIC
Select_DuplicateList (
 SelListPtr pSelList
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

Return:
SelListPtr: Pointer to the duplicate selection list (SelListPtr) or NULL = Invalid pSelList or system was not able to allocate a new list. See the SelListRec in Appendix A.

Example:
pNewList = Select_DuplicateList (pSelList);

Notes:
1.
The list duplicated by this function is a true copy and must be disposed of separately with Select_FreeList().

2.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_AllocList(), Select_FreeList()

Select_FreeList()

This function disposes of an entire selection list and any memory used by links in the list. XE "Selection Lists:Free"

Syntax:
INT16 PUBLIC
Select_FreeList (
 SelListPtr pSelList
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

Return:
Zero

Example:
CComSelList::~CComSelList()
{
 ::Select_FreeList((SelListPtr) m_pSelList);
 ::FreePtr((DetNodeRefPtr)m_pDetNodeRef);
}

Notes:
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_AllocList()

Select_GetFirstItem()

This function returns a pointer to the first item in Selection List (pSelList). XE "Selection Lists:Get First Item"

Syntax:
SelItemPtr PUBLIC
Select_GetFirstItem (
 SelListPtr pSelList,
 INT16 goIntoGroups
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

goIntoGroups: Not Currently Used - Should Always be Zero

Return:
SelItemPtr: Non-Zero = Selection List Item Pointer, NULL = pSelList not specified

Example:
if(!pSelItem)
 pSelItem = ::Select_GetFirstItem(
 (SelListPtr) m_pSelList,FALSE);
 if(!pSelItem)return 0;
 if(pSelItem->nType != ANODE)return -1;

Notes:
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_GetNextItem()

Select_GetListBounds()

This function stores the bounding rectangle for all items in selection list (pSelList) in the rectangle data structure identified by pRect. XE "Selection Lists:Get Bounds"

Syntax:
INT16 PUBLIC
Select_GetListBounds (
 SelListPtr pSelList,
 Rect *pRect
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

pRect: Pointer to a rectangle data structure

Return:
INT16:

Possible Values
Description

E00_OK =
No Errors

E00_INVALID_NULL_ARG
pSelList not specified

Notes:
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Select_GetListInfo()

This function returns information about a selection list according to nIndex. XE "Selection Lists:Get Information"

Syntax:
INT16 PUBLIC
Select_GetListInfo (
 SelListPtr pSelList,
 INT16 nIndex
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

nIndex: Identifies the information to get from the selection list:

SelListInfoIndexType
Value
Description

SLI_NUMSELECTED
0=
Number if items selected

SLI_NUMANODESSELECTED
1=
Number of ANODES selected

SLI_NUMGEODESSELECTED
2=
Number of GEODES selected

SLI_NUMDETNODESSELECTED
3=
Number of detection nodes selected

SLI_NUMGROUPSSELECTED
4=
Number of groups selected

SLI_NUMMOVABLESELECTED
5=
Number of movable objects selected

SLI_NUMTEXTBOXSELECTED
6=
Number of text boxes selected

SLI_NUMNONDELETE
7=
Number of objects that can't be deleted

SLI_NUMGROUPSATTACHED
8=
Number of attached groups

SLI_NUMSELWITHLINE
9=
Number of selections with line instances

SLI_NUMSELWITHAREA
10=
Number of selections with area instances

SLI_NUMSELWITHFONT
11=
Number of selections with font instances

Return:
INT16: Zero if the selection list is not valid. Non-Zero identifies the number of items selected according to the value of nIndex. If nIndex is set to SLI_NUMSELWITHFONT, this value identifies the number of selections in the selection list with font instances.

Example:
INT16 CSelList::GetNumSelected()
{
 return ::Select_GetListInfo((
 SelListPtr) m_pSelList,
 SLI_NUMSELECTED);
}

Select_GetNextItem()

This function returns the SelItem in the passed selection list that comes after the given SelItem (pCurr). If there are no items in the selection list after then given item, NULL is returned. XE "Selection Lists:Get Next Item"

Syntax:
SelItemPtr PUBLIC
Select_GetNextItem (
 SelItemPtr pCurr,
 INT16 goIntoGroups
);

Input:
pCurr: Pointer to an item in a selection list. See the SelItemRec in Appendix A.

goIntoGroups: Not Currently Used - Should Always be Zero

Return:
SelItemPtr: NULL = No next items after pCurr, Non-Zero = Pointer to a Selection List Item

Example:
for (pCurr=Select_GetFirstItem((
 SelListPtr) m_pSelList, FALSE); pCurr;
 pCurr=Select_GetNextItem(pCurr, FALSE))
{
 switch(pCurr->nType)
 {
 case ANODE:
 case GEODE:
 case GROUPODE:
 nMovable++;
 break;
 }
}
return nMovable;

Notes:
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Also See:
Select_GetFirstItem()

Select_GetSelectedSeriesID()

This function returns the series ID of the first item in the selection list. XE "Selection Lists:Get Selected Series ID"

Syntax:
INT16 PUBLIC
Select_GetSelectedSeriesID(
 SelListPtr pSelList
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

Return:
INT16;

Non-Zero =
Series ID of the first item in pSelList

-1 =
Error

Select_Group()

This function puts all items in a passed selection (pSelList) list into a group. If compactNow is set to TRUE, the selection list is changed to contain only the Group ID of the newly created group. The compactNow parameter is normally set to TRUE. If your application needs to modify items in the selection list AFTER the grouping operation, you can set compactNow to FALSE. However, NOTE that the selection list will be invalid if this is done. You application should call Select_RebuildList() SOON after a Select_Group with compactNow set to FALSE! XE "Selection Lists:Select Group"

Syntax:
INT16 PUBLIC
Select_Group (
 GraphPtr pGraph,
 SelListPtr pSelList,
 INT16 compactNow
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

compactNow: TRUE / FALSE

TRUE=
Change selection list to contain only the group ID of the newly created group

FALSE=
Do not change selection list to contain only the group ID of the new group

Return:
INT16:

Possible Values
Description

E00_OK =
Success

E00_INVALID_NULL_ARG=
Selection list is invalid

Also See:
Select_Ungroup()

Select_HandleHitTest()

This function takes a point in destination coordinates (mousePt) and checks the moving/sizing handles of every object in the selection list (pSelList). XE "Selection Lists:Handle Hit Test"

Syntax:
SelItemPtr PUBLIC
Select_HandleHitTest (
 SelListPtr pSelList,
 Point mousePt,
 INT16 FAR *whichHandle,
 Rect FAR *pItemRect
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

mousePt: Pointer to a point in destination coordinates

whichHandle: Pointer to INT16 where a value from the HandleType enum will be stored on return.

HandleType
Value
Description

HTTopLeft
0
Top-Left Handle

HTTopRight
1
Top-Right Handle

HTBottomLeft
2
Bottom-Left Handle

HTBottomRight
3
Bottom-Right Handle

HTCenterTop
4
Top-Center Handle

HTCenterRight
5
Right-Center Handle

HTCenterLeft
6
Left-Center Handle

HTCenterBottom
7
Bottom-Center Handle

pItemRect: Pointer to RECT that defines the rectangle for the sizing handle

If the point (mousePt) lies on one of the handles, pItemRect is set to the objects bounding rectangle, whichHandle is set to the handle number clicked on, and the object’s SelItemPtr is returned.

Return:
SelItemPtr: NULL = pSelList not specified or mousePt is not on a handle, Non-Zero = Selection List Item Pointer

Notes:
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection list and selection items.

Select_IsEqual()

This function compares the nLayer, nObjectID, nSeriesID, and nGroupID fields of the two selection item structures identified by pOne and pTwo. It returns TRUE if all fields are equal (i.e., the two passed SelItemPtrs represent the same object). XE "Selection Lists:Compare for Equality"

Syntax:
INT16 PUBLIC
Select_IsEqual (
 SelItemPtr pOne,
 SelItemPtr pTwo
);

Input:
pOne: Pointer to a Selection List Item. See the SelItemRec in Appendix A.

pTwo: Pointer to a Selection List Item. See the SelItemRec in Appendix A.

Return:
INT16: Zero = pOne and pTwo are not equal, Non-Zero = pOne and pTwo are equal

Example:
bFound = Select_IsEqual (pCurr, pItem) ;

Notes:
1.
The two selection list items need not be in the same selection list or even in a list at all. This is useful if you wish to implement your own Search List procedure or special cases on selections.

2.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection lists and selection items.

Select_IsObjectSelected()

This function determines whether the object nObjectID is selected in the selection list identified by pSelList. XE "Selection Lists:Is Ojbect Selected"

Syntax:
INT16 PUBLIC
Select_IsObjectSelected (
 SelListPtr pSelList,
 INT16 nObjectID
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

nObjectID: Object ID.

Return:
INT16:

Possible Values
Description

NULL =
pSelList not specified

TRUE =
Object is selected in pSelList

FALSE =
Object is not selected

Example:
Select_IsObjectSelected (pInfo->pSelList, OAN_ARROW);

Notes:
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection lists and selection items.

Select_IsSeriesRelatedObject()

This function returns a BOOLEAN16 identifying whether or not the object (nObjectID) is series-related. XE "Selection Lists:Is Series Related Object"

Syntax:
BOOLEAN16 PUBLIC
Select_IsSeriesRelatedObject(
 int nObjectID
);

Input:
nObjectID; Object ID

Return:
BOOLEAN16; TRUE/FALSE

TRUE =
nObjectID is series-related

FALSE =
nObjectID is not series-related

Select_RebuildItem()

This function checks the selection list item identified by pItem to see if it is still valid. XE "Selection Item:Rebuild"

Syntax:
INT16 PUBLIC
Select_RebuildItem (
 GraphPtr pGraph,
 SelItemPtr pItem
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pItem: Pointer to an item in the selection list. See the SelItemRec in Appendix A.

Return:
INT16: TRUE if the item is valid

Example:
/* Go through selection list and
check each item for integrity */
pPrev=NULL;
for (pCurr=pSelList->pHead; pCurr; pCurr=pNext) {
 pNext = pCurr->pNext;
 if (Select_RebuildItem(pGraph, pCurr)) {
 /* here when the current item is valid */
 pPrev = pCurr;
} else {
 /* here to remove the current item */

Also See:
Select_RebuildList()

Select_RebuildList()

This function rebuilds the selection list pSelList. It allows selection lists to maintain their integrity over graph redraws. After every redraw, Select_RebuildList() should be called for every selection list in use by the application. This will make sure the selection lists represent only valid detection nodes, and that each entry represents the same object, even if its detection node changed during the redraw. If any of the selections no longer have valid detection nodes, they will be removed from the list, and the number of SelItems removed will be returned. XE "Selection Lists:Rebuild"

Syntax:
INT16 PUBLIC
Select_RebuildList (
 GraphPtr pGraph,
 SelListPtr pSelList
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

Return:
INT16: Zero = pSelList is empty, Non-Zero = Number of items removed from the selection list

Example:
void CSelList::DrawSelection(CDrawEnv& de)
{
 ::Select_RebuildList((GraphPtr) m_pGraph,
 (SelListPtr) m_pSelList);
 ::Select_CalcHandlesList((
 DrawEnvPtr)de.GetDrawEnv(),
 (SelListPtr) m_pSelList);
 XOR_SelList(de);
}

Notes:
1.
If standard selection list handles are used, Select_CalcHandlesList() and Select_DrawXorList() should be called after Select_RebuildList() so that the handles also remain valid across redraws.

2.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection lists and selection items.

Also See:
Select_RebuildItem(), Select_CalcHandlesList(), Select_DrawXorList()

Select_RemoveItem()

This function removes the item pItem from the selection list pSelList. It updates the links in the list to reflect the removed item and releases memory allocated to the item. XE "Selection Lists:Remove Item"

Syntax:
INT16 PUBLIC
Select_RemoveItem (
 SelListPtr pSelList,
 SelItemPtr pItem
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

pItem: Pointer to a selection list item. See the SelItemRec in Appendix A.

Return:
INT16:

Possible Values
Description

E00_OK =
pItem found and removed

EDR_ITEM_NOT_FOUND =
pItem was not in pSelList

Example:
if (bShiftKey)
{
 pSelItem = ::Select_SearchList (
 (SelListPtr) m_pSelList,
 (DetNodeRefPtr) m_pDetNodeRef);
 if (pSelItem)
 {
 XOR_SelItem(de, pSelItem);
 ::Select_RemoveItem ((SelListPtr) m_pSelList,
 (SelItemPtr) pSelItem);
 }

Notes:
1.
This function is normally used after a Select_SearchList() has returned a hit on an item that was shift-clicked on.

2.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection lists and selection items.

Also See:
Select_SearchList()

Select_RemoveRelatedItems()

This function will remove items from a selection list that are RELATED to a TARGET detection node in a certain way. The way selected nodes are chosen is based on the nRelation parameter. For example, using SLR_SAME_SERIES would remove all of the graph objects with the same series ID from the pSelList selection list. The nObjectFilter parameter constrains the selection of objects to those with this object ID (not applicable for SLR_SAME_OBJECT). If nObjectFilter is O2D_RISER (for example), only bar risers in the matching series would be selected. Set nObjectFilter to -1 to match all object types. XE "Selection Lists:Remove Related Items"

Syntax:
INT16 PUBLIC
Select_RemoveRelatedItems(
 GraphPtr pGraph,
 SelListPtr pSelList,
 SelItemPtr pItem,
 INT16 nRelation,
 INT16 nObjectFilter
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A. This parameter identifies the selection list to update.

pItem: Pointer to a selection list item. See the SelItemRec in Appendix A. This parameter identifies the item in the selection list to remove.

nRelation: INT16 value from the SelListRelationIndexType enum that identifies the relationship of object to remove:

SelListRelationIndexType
Value
Description

SLR_SAME_OBJECT
0=
Detection nodes with the same object ID

SLR_SAME_SERIES
1=
Detection nodes with the same series ID

SLR_SAME_GROUP
3=
Detection nodes with the same group ID

SLR_SAME_AREAINST
4=
Detection nodes with the same area instance

SLR_SAME_LINEINST
5=
Detection nodes with the same line instance

SLR_SAME_FONTINST
6=
Detection nodes with the same font instance

SLR_SAME_SG
7=
Detection nodes with the same series/group

SLR_DEFAULT
8=
Default

nObjectFilter; Object ID Filter. Use -1 to select all objects.

Return:
INT16; Modifies the passed selection list accordingly and returns the number of items removed, or -1 if there is an error.

Also See:
Select_AddRelatedItems()

Select_SearchList()

This function checks the selection list (pSelList) for a match on the detection node pointer (pDetRef). If a match is found in the list, its SelItemPtr is returned. Otherwise, NULL is returned XE "Selection Lists:Search"

Syntax:
SelItemPtr PUBLIC
Select_SearchList (
 SelListPtr pSelList,
 DetNodeRefPtr pDetRef
);

Input:
pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

pDetRef: Pointer to a detection node item. See the DetNodeRef structure in Appendix A.

Return:
SelItemPtr:

Possible Values
Description

NULL =
pDetRef is not in pSelList

Non-Zero=
Selection List Item Pointer (SelItemPtr)

Example:
// if shift pressed, search to see
// if already selected.
// If it is, deselect,
// if not, add it to the selection list.
// -------------------------------------
if (bShiftKey)
{
 pSelItem = ::Select_SearchList (
 (SelListPtr) m_pSelList,
 (DetNodeRefPtr) m_pDetNodeRef);
}

Notes:
1.
This function is typically used after a user shift-clicks on a detection node. If a match is found, the clicked object should be removed from the selection list with Select_RemoveItem(). Otherwise, it should be added with Select_AddItem().

2.
Also see the PGSDK Programmer's Manual for more information about this and other functions that manipulate selection lists and selection items.

Also See:
Select_RemoveItem(), Select_AddItem()

Select_SelectAllSeriesRelatedObjects()

This function selects all series-related data objects present in the chart.

Syntax:
INT16 PUBLIC
Select_SelectAllSeriesRelatedObjects(
 GraphPtr pGraph,
 SelListPtr pSelList,
 BOOL bLegendMarkers
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

bLegendMarkers: Not currently used.

Return:
INT16; E00_OK = Success, -1 = Failed

Select_UnGroup()

This function expands any selected group items into component items. XE "Selection Lists:Ungroup"

Syntax:
INT16 PUBLIC
Select_UnGroup (
 GraphPtr pGraph,
 SelListPtr pSelList
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pSelList: Pointer to a selection list allocated by Select_AllocList(). See the SelListRec in Appendix A.

Return:
INT16:

Possible Values
Description

E00_OK =
successful

E00_INVALID_NULL_ARG=
selection list is not valid

Also See:
Select_Group()

SelectDetNode()

This function adds or subtracts detection node reference pointers to/from the selection list (pSelList). If append is non-zero and the item (identified by pDetRef) already exists in the list, the selection item is removed. If append is non-zero and the item is not in the list, it is added. If append is zero, all items are cleared from the selection list and pDetRef is added as the first item in the selection list. XE "Detection Node:Select"

Syntax:
SelItemPtr PUBLIC
SelectDetNode (
 GraphPtr pGraph,
 DrawEnvPtr pDE,
 SelListPtr pSelList,
 DetNodeRefPtr pDetRef,
 INT16 append
);

Input:
pGraph: Pointer to the graph object created by AllocGraphPtr()

pDE: Pointer to the draw environment created by AllocDrawEnv()

pSelList: Pointer to a selection list. See the SelListRec in Appendix A.

pDetRef: Pointer to a detection node item. See the DetNodeRef structure in Appendix A.

append: 0/1

Possible Values
Description

zero =
clear list and add this item

non-zero =
delete the single item if it exists or add it if it doesn't exist

Return:
SelItemPtr: Pointer to the new selection item in the selection list

Example:
SelectDetNode (gpGraph, pDE, pSelList,
 &detNodeRef, appendNode);

Notes:
If the draw environment pointer (pDE) is not NULL, stretch-resize handles will be XOR-ed for the item/object (pDetRef). The pDE parameter can be set to NULL if stretch-resize handles are not desired.

Also See:
SelectDetNodesInRect()

SelectDetNodesInRect()

This function is a simple default marquee selection routine. Given a pointer to a rectangle (pBounds), this function adds or subtracts items lying within it from the selection list, possibly clearing the list, based on the append parameter. Set append to TRUE to provide shift-marquee functionality. Set append to FALSE to select only the items surrounded. If pDE is not NULL, stretch-resize handles will be XOR-ed. If handles are not desired, set pDE to NULL. XE "Detection Node:Select in Rectangle"

Syntax:
INT16 PUBLIC
SelectDetNodesInRect (
 GraphPtr pGraph,
 INT16 LayerID,
 SelListPtr pSelList,
 Rect *pBounds,
 DrawEnvPtr pDE,
 INT16 append
);

Input:
pGraph: Pointer to graph

LayerID: Layer to search.

Possible Values
Description

ANNOTATION_LAYER
Annotation Layer

GRAPH_LAYER
Graph Layer

BACKGROUND_LAYER
Background Layer

pSelList: Pointer to the selection list to update. See the SelListRec in Appendix A.

pBounds: Bounds of marquee

pDE: Pointer to a draw environment. Set to NULL if stretch/size handles are not desired.

append:: TRUE/FALSE

TRUE=
provide shift-marquee functionality

FALSE=
select only the items surrounded

Return:
INT16:

Possible Values
Description

Zero =
Success

-1 =
Error

Also See:
SelectDetNode

Three |D| Graphics (08.2000)
7-1
7-34
Three |D| Graphics (08.2000)

Three |D| Graphics (08.2000)
7-33

